Fog Forecasting Using Self Growing Neural Network 'CombNET-II: ' A Solution for Imbalanced Training Sets Problem
نویسندگان
چکیده
This paper proposes a method to solve problem that comes with imbalanced training sets which is often seen in the practical applications. We modied Self Growing Neural Network CombNET-II to deal with the imbalanced condition. This model is then applied to practical application which was launched in '99 Fog Forecasting Contest sponsored by Neurocomputing Technical Group of IEICE, Japan. In this contest, fog event should be predicted every 30 minutes based on the observation of meteorological condition. As the result of the contest, CombNET-II achieved the highest accuracy among the participants and was chosen as the winner of the contest. The advantage of this model is that the independency of the branch networks contribute to an eective way of training and the time can be reduced.
منابع مشابه
A Solution for Imbalanced Training Sets Problem by CombNET - II and Its Application on Fog Forecasting
Studies on arti cial neural network have been conducted for a long time, and its contribution has been shown in many elds. However, the application of neural networks in the real world domain is still a challenge, since nature does not always provide the required satisfactory conditions. One example is the class size imbalanced condition in which one class is heavily under-represented compared ...
متن کاملFog Forecasting Using Self Growing Neural Network
This paper proposes a method to solve problem that comes with imbalanced training sets which is often seen in the practical applications. We modi ed Self Growing Neural Network CombNET-II to deal with the imbalanced condition. This model is then applied to practical application which was launched in '99 Fog Forecasting Contest sponsored by Neurocomputing Technical Group of IEICE, Japan. In this...
متن کاملA Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network
Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...
متن کاملEfficient Subspace Learning Using a Large Scale Neural Network Combnet-ii
In the field of artificial neural networks, large-scale classification problems are still challenging due to many obstacles such as local minima state, long time computation, and the requirement of large amount of memory. The large-scale network CombNET-II overcomes the local minima state and proves to give good recognition rate in many applications. However CombNET-II still requires a large am...
متن کاملForecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique
Artificial neural network is considered one of the most efficient methods in processing huge data sets that can be analyzed computationally to reveal patterns, trends, prediction, forecasting etc. It has a great prospective in engineering as well as in medical applications. The present work employs artificial neural network-based curve fitting techniques in prediction and forecasting of the Cov...
متن کامل